

ANR AMMSI

A stochastic process for censored degradation data

Project AMMSI Third annual workshop - UTT

E. Dautrême and E. Remy (EDF R&D) S. Mercier and L. Bordes (University of Pau)

January 29, 2015

OUTLINE

- **1.** INDUSTRIAL CONTEXT, AVAILABLE DATA AND OBJECTIVES
- **2.** STOCHASTIC PROCESS AND STATISTICAL INFERENCE PROCEDURE
- **3.** APPLICATION TO EDF DATA
- 4. CONCLUSIONS AND PROSPECTS

Industrial context, available data and objectives

INDUSTRIAL CONTEXT AND AVAILABLE DATA

- Periodic in-service inspections of the components within EDF electric power plants in order to ensure that the flaw sizes remain admissible
- No perfect image of the degradations given by the non-destructive testing processes, but only partial and censored information
- Two types of information:
 - 1. Total number of initiated flaws
 - 2. Size of the largest initiated flaw
 - Fictitious example for a given component:

Inspection time t _j	Total number of initiated flaws n _j	Lower bound <i>ℓ_j</i> of the size of the largest initiated flaw	Upper bound u _j of the size of the largest initiated flaw
10	0	0	0
90	2	0	20
300	3	20	25
500	4	37	37

↔ No initiated flaw

← 2 initiated flaws with sizes lower than 20

← 3 initiated flaws and size of the largest one between 20 and 25

← 4 initiated flaws and size of the largest one equal to 37 - 4

OBJECTIVES

- Development of a specific stochastic model:
 - Driven by this partial censored information coming from the field
 - Allowing to derive useful indicators for the reliability engineer, for instance:
 - Initiation time of the first flaw
 - Propagation of the flaw size over time
 - Hitting time of a given degradation threshold
- Studying the impact of taking into account the information brought by the total number of initiated flaws

Stochastic process and statistical inference procedure

NOTATIONS

Notations for one component:

- □ N_t : random number of initiated flaws at time $t \ge 0$
- T₁ < T₂ < ... < T_n < ...: successive random initiation times of the flaws
 Z_t⁽ⁱ⁾ = X_{(t-T_i)⁺}: random size of the i-th flaw at time t
 Z_t =
 {
 max (Z_t⁽ⁱ⁾) = max (X<sub>(t-T_i)⁺) if N_t ≥ 1 0 if N_t = 0
 }
 if N_t = 0
 }

 </sub>
- Notations for several components:
 - N: total number of components
 - \square $m^{(k)}:$ total number of measurements on the k-th component $(1 \le k \le N)$
 - □ $t_j^{(k)}$: j-th inspection time $(1 \le j \le m^{(k)})$ of the k-th component
 - $\mathbf{n}_{i}^{(k)}$: observed total number of initiated flaws on the k-th component at inspection time $t_{i}^{(k)}$
 - $\mathbf{z}_{i}^{(k)}$: measured size of the largest flaw on the k-th component at inspection time $t_{i}^{(k)}$
 - $\ell_j^{(k)}$ and $u_j^{(k)}$: lower and upper bounds of the size of the largest flaw on the k-th component at inspection time $t_j^{(k)}$ with $\ell_j^{(k)} \le z_j^{(k)} \le u_j^{(k)}$
 - If $u_j^{(k)} = 0$: no initiated flaw on the k-th component at inspection time $t_j^{(k)}$
 - If $0 < \ell_j^{(k)} = u_j^{(k)}$: size $z_j^{(k)}$ of the largest flaw on the k-th component at inspection time $t_j^{(k)}$ equal to $\ell_j^{(k)} = u_j^{(k)}$

ASSUMPTIONS

Stochastic independence between the:

- Components, also considered to be identical
- Initiated flaws
- Initiation and propagation phases

Non homogeneous Poisson process for initiation:

$$\square \mathbb{P}(N_t = n) = \exp(-\alpha t^{\beta}) \frac{(\alpha t^{\beta})^n}{n!}, t \ge 0, n \ge 0, \alpha > 0, \beta > 0 :$$

- Rate function: $\lambda_{\alpha,\beta}(t) = \alpha\beta t^{\beta-1}$ Cumulative rate function: $\Lambda_{\alpha,\beta}(t) = \int_0^t \lambda_{\alpha,\beta}(u) \, du = \alpha t^{\beta}$
- Expected value: $\mathbb{E}(N_t) = \alpha t^{\beta}$

Homogeneous Gamma process for propagation of one flaw size:

- $X_t^{(i)} \sim \text{Gamma distribution } \mathcal{G}(at,b), t \ge 0, a > 0, b > 0$: Probability density function: $f_{at,b}(x) = \frac{b^{at}}{\Gamma(at)} x_{cx}^{at-1} \exp(-bx), x \ge 0$
 - Cumulative distribution function: $\mathbb{F}_{at,b}(x) = \int_0^{\infty} f_{at,b}(u) du$
 - Expected value: $\mathbb{E}(X_t^{(i)}) = at/b$
 - Variance: $\mathbb{V}(X_t^{(i)}) = at/b^2$

STATISTICAL INFERENCE PROCEDURE

• Available data:

$$\mathbf{n} = \left(n_{j}^{(i)}\right)_{1 \leq j \leq m^{(i)}, 1 \leq i \leq N}, \boldsymbol{\ell} = \left(\ell_{j}^{(i)}\right)_{1 \leq j \leq m^{(i)}, 1 \leq i \leq N}$$
$$\mathbf{u} = \left(u_{j}^{(i)}\right)_{1 \leq j \leq m^{(i)}, 1 \leq i \leq N}, \mathbf{t} = \left(t_{j}^{(i)}\right)_{1 \leq j \leq m^{(i)}, 1 \leq i \leq N}$$

- Maximum likelihood (ML) method:
 - Requires the joint distribution of {(N_{t1},Z_{t1}),..., (N_{tm},Z_{tm})}_{m≥1} and numerical integration methods
 - Tractable with difficulty
 - □ Nevertheless, the distribution of $(N_t)_{t \ge 0}$ can be easily written...

• Two-step statistical inference procedure:

- **Γ** First step: ML estimation of parameters (α, β) using **n** and **t**
- Second step: maximisation of the composite likelihood function^(*), based on the conditional distribution of (Z_t)_{t≥0} given (N_t)_{t≥0}, in order to estimate parameters (a,b) using n, t, ℓ and u, and replacing (α,β) by their estimates obtained at the end of the first step
- Validated on simulated data

(*) D. Cox, N. Reid (2004). A note on pseudolikelihood constructed from marginal densities. Biometrika 91: 729–737 C. Varin, N. Reid, D. Firth (2011). An overview of composite likelihood methods. Statistica Sinica 21: 5–42

ANR AMMSI - 9

STATISTICAL INFERENCE PROCEDURE

- Conditional distribution of Z_t knowing $N_t = n \ge 1$:
 - Cumulative distribution function:

$$\begin{split} F_{Z_t|N_t}(z|n;a,b,\alpha,\beta) &= \mathbb{P}(Z_t \le z|N_t = n) = \mathbb{P}\left(\max_{0 \le i \le n} \left(X_{t-T_i}^{(i)}\right) \le z|N_t = n\right) \\ &= \left(\frac{\int_0^t \mathbb{F}_{ay,b}(z)\lambda_{\alpha,\beta}(t-y)dy}{\Lambda_{\alpha,\beta}(t)}\right)^n \end{split}$$

Probability density function:

$$f_{Z_{t}|N_{t}}(z|n;a,b,\alpha,\beta) = \frac{n}{\left(\Lambda_{\alpha,\beta}(t)\right)^{n}} \left(\int_{0}^{t} f_{ay,b}(z)\lambda_{\alpha,\beta}(t-y)dy\right) \left(\int_{0}^{t} \mathbb{F}_{ay,b}(z)\lambda_{\alpha,\beta}(t-y)dy\right)^{n-1}$$

STATISTICAL INFERENCE PROCEDURE

• First step of the statistical inference procedure:

 $\hat{\boldsymbol{\beta}} = \arg \max_{\boldsymbol{\beta} > 0} \mathcal{L}(\boldsymbol{\beta} | \mathbf{n}, \mathbf{t})$

with:

$$\mathcal{L}(\beta|\mathbf{n}, \mathbf{t}) = -\left(\sum_{i=1}^{N} n_{m^{(i)}}^{(i)}\right) \log\left(\sum_{i=1}^{N} \left(t_{m^{(i)}}^{(i)}\right)^{\beta}\right) + \sum_{i=1}^{N} \sum_{j=1}^{m^{(i)}-1} \left(n_{j+1}^{(i)} - n_{j}^{(i)}\right) \log\left(\left(t_{j+1}^{(i)}\right)^{\beta} - \left(t_{j}^{(i)}\right)^{\beta}\right)$$

then:
$$\widehat{\alpha} = \alpha(\widehat{\beta}) = \frac{\sum_{i=1}^{N} n_{m^{(i)}}^{(i)}}{\sum_{i=1}^{N} \left(t_{m^{(i)}}^{(i)}\right)^{\widehat{\beta}}}$$

Second step of the statistical inference procedure:

$$(\hat{\mathbf{a}}, \hat{\mathbf{b}}) = \arg \max_{(\mathbf{a}, \mathbf{b}) > 0} \mathcal{L}_{\widehat{\beta}}(\mathbf{a}, \mathbf{b} | \mathbf{n}, \mathbf{t}, \boldsymbol{\ell}, \mathbf{u})$$

with:

 $\mathcal{L}_{\beta}(a, b | \mathbf{n}, \mathbf{t}, \boldsymbol{\ell}, \mathbf{u})$

$$= \sum_{i=1}^{N} \sum_{\substack{1 \le j \le m^{(i)} \\ \text{such as } 0 < \ell_{j}^{(i)} = u_{j}^{(i)}}} \log \left(\int_{0}^{t_{j}^{(i)}} f_{ay,b} \left(u_{j}^{(i)} \right) \left(t_{j}^{(i)} - y \right)^{\beta - 1} dy \right) + \sum_{i=1}^{N} \sum_{\substack{1 \le j \le m^{(i)} \\ \text{such as } 0 < \ell_{j}^{(i)} = u_{j}^{(i)}}} \left(n_{j}^{(i)} - 1 \right) \log \left(\int_{0}^{t_{j}^{(i)}} \mathbb{F}_{ay,b} \left(u_{j}^{(i)} \right) \left(t_{j}^{(i)} - y \right)^{\beta - 1} dy \right) + \sum_{i=1}^{N} \sum_{\substack{1 \le j \le m^{(i)} \\ \text{such as } 0 < \ell_{j}^{(i)} = u_{j}^{(i)}}} \log \left(\left\{ \int_{0}^{t_{j}^{(i)}} \mathbb{F}_{ay,b} \left(u_{j}^{(i)} \right) \left(t_{j}^{(i)} - y \right)^{\beta - 1} dy \right\}^{n_{j}^{(i)}} - \left\{ \int_{0}^{t_{j}^{(i)}} \mathbb{F}_{ay,b} \left(\ell_{j}^{(i)} \right) \left(t_{j}^{(i)} - y \right)^{\beta - 1} dy \right\}^{n_{j}^{(i)}} \right\}$$

Confidence intervals on the parameters obtained by non parametric bootstrap

ANR AMMSI - 11

DERIVED RELIABILITY INDICATORS

• Initiation time of the first flaw U \sim Weibull distribution $\mathcal{W}(\alpha^{-1/\beta},\beta)$:

$$\square \mathbb{P}(U > t) = \mathbb{P}(N_t = 0) = \exp(-\Lambda_{\alpha,\beta}(t)) = \exp(-\alpha t^{\beta})$$

- Mean propagation of the size of one initiated flaw: ∝ a/b
- Quantile of the hitting time of a given degradation threshold:
 - Denoting $t_{\epsilon}^{(t_0, z_0, n_0)}$, $t_0 \ge 0$, $z_0 < red, n_0 > 0$, the ϵ -quantile of the hitting time τ of a given degradation threshold d knowing $Z_{t_0} = z_0$ and $N_{t_0} = n_0$
 - $t_{\varepsilon}^{(t_0,z_0,n_0)}$ verifies:

$$\mathbb{P}\left(\tau < t_{\varepsilon}^{(t_0, z_0, n_0)} \big| Z_{t_0} = z_0, N_{t_0} = n_0\right) = \varepsilon \Leftrightarrow \mathbb{P}\left(Z_{t_{\varepsilon}^{(t_0, z_0, n_0)}} \le \mathcal{A} \big| Z_{t_0} = z_0, N_{t_0} = n_0\right) = 1 - \varepsilon$$

After some calculations...

• If
$$z_0 = 0$$
, then $n_0 = 0$ and $t_{\epsilon}^{(t_0,0,0)}$ is solution of the equation:
$$\int_0^{t_{\epsilon}^{(t_0,0,0)}} \overline{\mathbb{F}}_{ay,b}(d) \left(t_{\epsilon}^{(t_0,0,0)} - y\right)^{\beta-1} dy = -\frac{\log(1-\epsilon)}{\alpha\beta}$$

• If $z_0 > 0$, then $t_{\epsilon}^{(t_0, z_0, n_0)}$ is solution of the equation:

$$\log\left(\mathbb{F}_{a(t-t_{0}),b}(\mathcal{d}-z_{0})\right) - \alpha\beta \int_{t_{0}}^{t} u^{\beta-1} \overline{\mathbb{F}}_{a(t-u),b}(\mathcal{d}) du + (n_{0}-1) \log\left(\int_{0}^{t_{0}} u^{\beta-1} \left(\int_{0}^{z_{0}} \mathbb{F}_{a(t-t_{0}),b}(\mathcal{d}-x) f_{a(t_{0}-u),b}(x) dx\right) du\right)$$

$$= \log(1-\varepsilon) + (n_{0}-1) \log\left(\int_{0}^{t_{0}} \mathbb{F}_{a(t_{0}-y),b}(z_{0}) u^{\beta-1} dy\right)$$

$$\mathbb{R} \text{ AMMSI} - 12$$

Application to EDF data

Comparison between the results obtained with:

- $\square \mathcal{M}_1$: previously presented model
- *M*₂: simplified model in which the information on the total number of initiated flaws is omitted, thus focusing only on the modelling of the size of the largest flaw
 - $Z_t = Y_{(t-U)^+}$ with U the initiation time \sim Weibull distributed and $(Y_t)_{t \ge 0}$ a non homogeneous Gamma process characterizing the propagation of the size of the largest flaw
- N = 228 components with a total number of 623 inspections
- Initiation time of the first flaw:

Model	Mean [bootstrap 90%-Cl]	Standard deviation [bootstrap 90%-CI]
${\cal M}_1$	19.613 [18.396 ; 21.093]	9.11 [8.22 ; 10.315]
${\cal M}_2$	18.994 [18.323 ; 20.392]	17.978 [16.124 ; 22.344]

- Mean propagation over time:
 - □ \mathcal{M}_1 : 1.999 per unit of time for one initiated flaw (bootstrap 90%-Cl = [1.762; 2.263])
 - $\square \mathcal{M}_2$: for the size of the largest flaw

Time	Mean propagation [bootstrap 90%-CI]		
1	1.235 [0.385 ; 1.421]		
2	1.397 [0.694 ; 1.502]		
3	1.465 [0.884 ; 1.561]		
4	1.511 [1.038 ; 1.6]		
5	1.546 [1.16 ; 1.646]		
6	1.575 [1.255 ; 1.696]		
7	1.599 [1.329 ; 1.747]		
8	1.62 [1.377 ; 1.808]		
9	1.639 [1.413 ; 1.869]		
10	1.656 [1.45 ; 1.934]		

- Quantiles of the hitting time of a given degradation threshold:
 - From $z_0 = 0$ at $t_0 = 0$ (new component):

- Quantiles of the hitting time of a given degradation threshold:
 - From (t_0, z_0, n_0) with $\varepsilon = 90\%$:

	t _o	z ₀	n _o	$t_{0.9}^{(t_0,z_0,n_0)}$ with \mathcal{M}_1	${f t}_{0.9}^{({f t}_0,{f z}_0,{f n}_0)}$ with ${\cal M}_2$
	25 25 25 25 25 25	20 20 20 20 20 20	2 4 6 8 10	41.48 36.66 33.58 31.102 29.683	54.959 54.959 54.959 54.959 54.959
	25 25 25 25 25	30 30 30 30 30	2 4 6 8 10	38.362 34.023 31.311 29.258 27.655	48.542 48.542 48.542 48.542 48.542
	25 25 25 25 25 25	40 40 40 40 40	2 4 6 8 10	34.494 30.974 28.716 26.859 25.395	$\begin{array}{c} 42.101 \\ 42.101 \\ 42.101 \\ 42.101 \\ 42.101 \end{array}$
IVERSITÉ de pau et des pays de l'adour BDF	25 25 25 25 25	50 50 50 50 50	2 4 6 8 10	29.981 27.47 25.56 24.076 22.781	35.532 35.532 35.532 35.532 35.532

ANR AMMSI - 17

Comments:

- Remain cautious about the interpretation of the two models:
 - *M*₁: characterizes the initiation and propagation of one flaw
 - *M*₂: characterizes the initiation and propagation of the largest flaw
- Similar mean initiation time between \mathcal{M}_1 and \mathcal{M}_2 , but higher scattering for \mathcal{M}_2
- Mean propagation of the size of one flaw for M₁ higher than the mean propagation of the size of the largest flaw for M₂
- Results obtained by the simplified model M₂ more "optimistic" than the ones obtained by M₁
- Omitting the (available) information brought by the total number of initiated flaws with \mathcal{M}_2 may lead to non-conservative forecasts!
- Some numerical instabilities observed (more on \mathcal{M}_2 than on \mathcal{M}_1)
- And if a non homogeneous Gamma process had been taken for propagation in \mathcal{M}_1 ?
 - Test carried out...
 - ... but no statistical evidence of the relevance of considering this more general process

Conclusions and prospects

CONCLUSIONS

- Development of a specific stochastic model driven by the partial and censored information coming from the field
- Useful indicators for reliability engineers
- Importance of:
 - Taking into account all the available information
 - Reporting it to the operators who collect the data from the field
- A perfect example of a fruitful partnership between academic and industrial worlds

PROSPECTS

- Testing other stochastic process families?
- Model selection criteria?
- Taking into account:
 - Measurement error on the flaw sizes?
 - Probability of (non) detection of (small) initiated flaws?

THANK YOU FOR YOUR ATTENTION!

