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INDUSTRIAL CONTEXT AND AVAILABLE DATA

 Periodic in-service inspections of the components within EDF electric power plants 

in order to ensure that the flaw sizes remain admissible

 No perfect image of the degradations given by the non-destructive testing 

processes, but only partial and censored information

 Two types of information:

1. Total number of initiated flaws

2. Size of the largest initiated flaw

 Fictitious example for a given component:

Inspection 

time tj

Total number of 

initiated flaws nj

Lower bound 𝓁j

of the size of the 

largest initiated flaw

Upper bound uj

of the size of the 

largest initiated flaw

10 0 0 0 ↤ No initiated flaw

90 2 0 20
↤ 2 initiated flaws with sizes

lower than 20

300 3 20 25
↤ 3 initiated flaws and size of the 

largest one between 20 and 25

500 4 37 37
↤ 4 initiated flaws and size of the 

largest one equal to 37
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OBJECTIVES

 Development of a specific stochastic model:

 Driven by this partial censored information coming from the field

 Allowing to derive useful indicators for the reliability engineer, for instance:

• Initiation time of the first flaw

• Propagation of the flaw size over time

• Hitting time of a given degradation threshold

 Studying the impact of taking into account the information brought by the total 

number of initiated flaws
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NOTATIONS

 Notations for one component:

 Nt: random number of initiated flaws at time t ≥ 0

 T1 < T2 < … < Tn < …: successive random initiation times of the flaws

 : random size of the i-th flaw at time t

 : random size of the largest flaw at time t

 Notations for several components:

 N: total number of components

 m(k): total number of measurements on the k-th component (1 ≤ k ≤ N)

 tj
(k): j-th inspection time (1 ≤ j ≤ m(k)) of the k-th component

 nj
(k): observed total number of initiated flaws on the k-th component at inspection time tj

(k)

 zj
(k): measured size of the largest flaw on the k-th component at inspection time tj

(k)

 𝓁j
(k) and uj

(k): lower and upper bounds of the size of the largest flaw on the k-th

component at inspection time tj
(k) with 𝓁j

(k) ≤ zj
(k) ≤ uj

(k)

• If uj
(k) = 0: no initiated flaw on the k-th component at inspection time tj

(k)

• If 0 < 𝓁j
(k) = uj

(k): size zj
(k) of the largest flaw on the k-th component at inspection time tj

(k) equal to    

𝓁j
(k) = uj

(k)

Zt
 i = X t−Ti 

+
 i  

Zt =  
max

0≤i≤Nt

 Zt
 i 
 = max

0≤i≤Nt

 X t−Ti 
+

 i 
  if Nt ≥ 1 

0 if Nt = 0
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ASSUMPTIONS

 Stochastic independence between the:

 Components, also considered to be identical

 Initiated flaws

 Initiation and propagation phases

 Non homogeneous Poisson process for initiation:

 :

• Rate function: λ,(t) = t-1

• Cumulative rate function:

• Expected value: 𝔼(Nt) = t

 Homogeneous Gamma process for propagation of one flaw size:

 Xt
(i) ↝ Gamma distribution 𝒢(at,b), t ≥ 0, a > 0, b > 0:

• Probability density function:

• Cumulative distribution function:

• Expected value: 𝔼(Xt
(i)) = at/b

• Variance:𝕍(Xt
(i)) = at/b²

ℙ Nt = n = exp −αtβ 
 αtβ 

n

n!
, t ≥ 0, n ≥ 0,α > 0,β > 0 

fat ,b x =
bat

Γ at 
xat−1exp −bx , x ≥ 0 

𝔽at ,b x =  fat ,b u du
x

0

 

Λα ,β t =  λα ,β u 
t

0

du = αtβ  
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STATISTICAL INFERENCE PROCEDURE

 Available data:

 Maximum likelihood (ML) method:

 Requires the joint distribution of {(Nt1
,Zt1

 ,…,  Ntm
,Ztm

)}m ≥ 1 and numerical integration 

methods

 Tractable with difficulty

 Nevertheless, the distribution of (Nt)t ≥ 0 can be easily written…

 Two-step statistical inference procedure:

 First step: ML estimation of parameters (,) using n and t

 Second step: maximisation of the composite likelihood function(*), based on the 

conditional distribution of (Zt)t ≥ 0 given (Nt)t ≥ 0, in order to estimate parameters (a,b)
using n, t, ℓ and u, and replacing (,) by their estimates obtained at the end of the first 

step

 Validated on simulated data

𝐧 =  nj
 i 
 

1≤j≤m i ,1≤i≤N
,𝓵 =  ℓj

 i 
 

1≤j≤m i ,1≤i≤N
 

𝐮 =  uj
 i 
 

1≤j≤m i ,1≤i≤N
, 𝐭 =  tj

 i 
 

1≤j≤m i ,1≤i≤N
 

(*) D. Cox, N. Reid (2004). A note on pseudolikelihood constructed from marginal densities. Biometrika 91: 729–737

C. Varin, N. Reid, D. Firth (2011). An overview of composite likelihood methods. Statistica Sinica 21: 5–42
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STATISTICAL INFERENCE PROCEDURE

 Conditional distribution of Zt knowing Nt = n ≥ 1:

 Cumulative distribution function:

 Probability density function:

𝔽Zt  Nt
  z n; a, b,α,β  = ℙ Zt ≤ z Nt = n  = ℙ max

0≤i≤n
 Xt−Ti

 i 
 ≤ z Nt = n  

=  
 𝔽ay ,b z λα ,β t − y dy

t

0

Λα ,β t 
 

n

 

fZt  Nt
  z n; a, b,α,β  =

n

 Λα ,β t  
n   fay ,b z λα ,β t − y dy

t

0

   𝔽ay,b z λα ,β t − y dy
t

0

 

n−1

 



- 11

STATISTICAL INFERENCE PROCEDURE

 First step of the statistical inference procedure:

with:

then:

 Second step of the statistical inference procedure:

with:

 Confidence intervals on the parameters obtained by non parametric bootstrap

β = arg max
β>0

ℒ β 𝐧, 𝐭   

ℒ β 𝐧, 𝐭  = −  n
m i 
 i 

N

i=1

 log   t
m i 
 i 

 
β

N

i=1

 +    nj+1
 i 

− nj
 i 
 log   tj+1

 i 
 
β
−  tj

 i 
 
β
 

m i −1

j=1

N

i=1

 

α = α β  =
 n

m i 
 i N

i=1

  t
m i 

 i  
β 

N
i=1

 

 a , b  = arg max
 a,b >0

ℒβ  a, b 𝐧, 𝐭,𝓵,  𝐮  

ℒβ a, b 𝐧, 𝐭,𝓵,  𝐮 

=   log  fay ,b  uj
 i 
  tj

 i 
− y 

β−1
dy

tj
 i 

0

 

1≤j≤m i 

such  as  0<ℓj
 i 

=u j
 i 

N

i=1

+    nj
 i 
− 1 log  𝔽ay ,b  uj

 i 
  tj

 i 
− y 

β−1
dy

tj
 i 

0

 

1≤j≤m i 

such  as  0<ℓj
 i 

=uj
 i 

N

i=1

+   log   𝔽ay ,b  uj
 i   tj

 i − y 
β−1

dy
tj
 i 

0

 

n j
 i 

−   𝔽ay ,b  ℓj
 i   tj

 i − y 
β−1

dy
tj
 i 

0

 

n j
 i 

 

1≤j≤m i 

such  as  n j
 i 
≥1 and  0≤ℓj

 i 
<u j

 i 

N

i=1
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DERIVED RELIABILITY INDICATORS

 Initiation time of the first flaw U ↝ Weibull distribution 𝒲(-1/,):

 ℙ U > t  = ℙ Nt = 0) = exp(-Λ,(t)) = exp(-t)

 Mean propagation of the size of one initiated flaw: ∝ a/b

 Quantile of the hitting time of a given degradation threshold:

 Denoting , t0 ≥ 0, z0 < , n0 > 0, the ε-quantile of the hitting time τ of a given

degradation threshold 𝒹 knowing and

 verifies:

 After some calculations…

• If z0 = 0, then n0 = 0 and              is solution of the equation:

• If z0 > 0, then is solution of the equation:

Zt0
= z0 Nt0

= n0 

tε
 t0 ,0,0 

 

tε
 t0 ,z0 ,n0  

ℙ τ < tε
 t0 ,z0 ,n0  Zt0

= z0 , Nt0
= n0

  = ε ⇔ ℙ Z
tε
 t0,z0,n 0 ≤ 𝒹 Zt0

= z0 , Nt0
= n0

  = 1 − ε 

 𝔽 ay ,b 𝒹  tε
 t0 ,0,0 

− y 
β−1

dy
tε
 t0,0,0 

0

= −
log 1 − ε 

αβ
 

tε
 t0 ,z0 ,n0  

log  𝔽a t−t0 ,b
 𝒹 − z0  − αβ uβ−1𝔽 a t−u ,b 𝒹 du

t

t0

+  n0 − 1 log  uβ−1   𝔽a t−t0 ,b
 𝒹 − x fa t0−u ,b x dx

z0

0

 du
t0

0

 

= log 1 − ε +  n0 − 1 log  𝔽a t0−y ,b z0 u
β−1dy

t0

0

  

tε
 t0 ,z0 ,n0  
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APPLICATION TO EDF DATA

 Comparison between the results obtained with:

 ℳ1: previously presented model

 ℳ2: simplified model in which the information on the total number of initiated flaws is

omitted, thus focusing only on the modelling of the size of the largest flaw

• Zt = Y(t-U)+ with U the initiation time ↝ Weibull distributed and (Yt)t ≥ 0 a non homogeneous Gamma 

process characterizing the propagation of the size of the largest flaw

 N = 228 components with a total number of 623 inspections

 Initiation time of the first flaw:

Model Mean [bootstrap 90%-CI] Standard deviation [bootstrap 90%-CI]

ℳ1 19.613 [18.396 ; 21.093] 9.11 [8.22 ; 10.315]

ℳ2 18.994 [18.323 ; 20.392] 17.978 [16.124 ; 22.344]
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APPLICATION TO EDF DATA

 Mean propagation over time:

 ℳ1: 1.999 per unit of time for one initiated flaw (bootstrap 90%-CI = [1.762 ; 2.263])

 ℳ2: for the size of the largest flaw

Time Mean propagation [bootstrap 90%-CI]

1 1.235 [0.385 ; 1.421]

2 1.397 [0.694 ; 1.502]

3 1.465 [0.884 ; 1.561]

4 1.511 [1.038 ; 1.6]

5 1.546 [1.16 ; 1.646]

6 1.575 [1.255 ; 1.696]

7 1.599 [1.329 ; 1.747]

8 1.62 [1.377 ; 1.808]

9 1.639 [1.413 ; 1.869]

10 1.656 [1.45 ; 1.934]
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APPLICATION TO EDF DATA

 Quantiles of the hitting time of a given degradation threshold:

 From z0 = 0 at t0 = 0 (new component):

ε = 90%

ℳ2

ℳ1
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APPLICATION TO EDF DATA

 Quantiles of the hitting time of a given degradation threshold:

 From (t0,z0,n0) with ε = 90%:

t0 z0 n0 with ℳ1 with ℳ2

25
25
25
25
25

20
20
20
20
20

2
4
6
8

10

41.48
36.66
33.58

31.102
29.683

54.959
54.959
54.959
54.959
54.959

25
25
25
25
25

30
30
30
30
30

2
4
6
8

10

38.362
34.023
31.311
29.258
27.655

48.542
48.542
48.542
48.542
48.542

25
25
25
25
25

40
40
40
40
40

2
4
6
8

10

34.494
30.974
28.716
26.859
25.395

42.101
42.101
42.101
42.101
42.101

25
25
25
25
25

50
50
50
50
50

2
4
6
8

10

29.981
27.47
25.56

24.076
22.781

35.532
35.532
35.532
35.532
35.532

𝐭𝟎.𝟗
 𝐭𝟎,𝐳𝟎,𝐧𝟎  𝐭𝟎.𝟗

 𝐭𝟎,𝐳𝟎,𝐧𝟎  
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APPLICATION TO EDF DATA

 Comments:

 Remain cautious about the interpretation of the two models:

• ℳ1: characterizes the initiation and propagation of one flaw

• ℳ2: characterizes the initiation and propagation of the largest flaw

 Similar mean initiation time between ℳ1 and ℳ2, but higher scattering for ℳ2

 Mean propagation of the size of one flaw for ℳ1 higher than the mean propagation of 

the size of the largest flaw for ℳ2

 Results obtained by the simplified model ℳ2 more "optimistic" than the ones obtained

by ℳ1

 Omitting the (available) information brought by the total number of initiated flaws with 

ℳ2 may lead to non-conservative forecasts!

 Some numerical instabilities observed (more on ℳ2 than on ℳ1)

 And if a non homogeneous Gamma process had been taken for propagation in ℳ1?

• Test carried out…

• … but no statistical evidence of the relevance of considering this more general process
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CONCLUSIONS

 Development of a specific stochastic model driven by the partial and censored

information coming from the field

 Useful indicators for reliability engineers

 Importance of:

 Taking into account all the available information

 Reporting it to the operators who collect the data from the field

 A perfect example of a fruitful partnership between academic and industrial worlds



- 21

PROSPECTS

 Testing other stochastic process families?

 Model selection criteria?

 Taking into account:

 Measurement error on the flaw sizes?

 Probability of (non) detection of (small) initiated flaws?
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